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The motion of rigid particles in a shear flow 
at low Reynolds number 

By F. P. BRETHERTON 
Trinity College, Cambridge 

(Received 19 Sune 1961 and in revised form 23 March 1962) 

According to Jeffery (1923) the axis of an isolated rigid neutrally buoyant 
ellipsoid of revolution in a uniform simple shear at low Reynolds number moves 
in one of a family of closed periodic orbits, the centre of the particle moving with 
the velocity of the undisturbed fluid at that point. The present work is a theo- 
retical investigation of how far the orbit of a particle of more general shape in 
a non-uniform shear in the presence of rigid boundaries may be expected to be 
qualitatively similar. Inertial and non-Newtonian effects are entirely neglected. 

The orientation of the axis of dmost any body of revolution is a periodic 
function of time in any unidirectional flow, and also in a Couette viscometer. 
This is also true if there is a gravitational force on the particle in the direction of 
the streamlines. There is no lateral drift. On the other hand, certain extreme 
shapes, including some bodies of revolution, will assume one of two orientations 
and migrate to the bounding surfaces or to the centre of the flow. In  any constant 
slightly three-dimensional uniform shear any body of revolution will ultimately 
assume a preferred orientation. 

1. Introduction 
The motion under viscous forces of a rigid ellipsoid of revolution in a uniform 

simple shear at low Reynolds number was solved completely by Jeffery (1 923) 
and has been accurately verified by the experiments of Trevelyan & Mason (1951). 
The centre of such an ellipsoid moves with the velocity of the undisturbed fluid 
at that point, and in a co-ordinate frame moving with the centre the ends of its 
axis describe a closed spherical ellipse. There is an inh i t e  family of such orbits, 
and that actually described depends on the initial orientation of the particle. 
For a long ellipsoidal rod of large axis ratio the axis is, for most of the time, 
aligned almost parallel to the streamlines, but then reverses itself periodically. 
Jeffery postulated that in practice the particle would assume the orbit corre- 
sponding to minimum mean dissipation of energy. 

Taylor (1923) found experimentally that an ellipsoid of revolution in a uniform 
shear did not move in a quite closed orbit, but that there was a slow drift through 
the continuous family of orbits calculated by Jeffery, until the ellipsoid was 
rotating with its axis in a plane perpendicular to the vortex lines. It has been 
suggested by Saffman (1956) that this might be due to non-Newtonian properties 
of the suspending medium. Mason & Manley (1956) also found a slow drift, but 
the evidence is inconclusive. 
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Saffman (1956) remarked that the linearity of the Stokes equations for slow 
flow implies that a slight non-uniformity of the shear, or the presence of boundary 
walls, could not explain this drift. A more developed version of this argument is 
presented in $ 2  of this paper, where it is shown that it may also be applied to 
other cases of interest. 

Except in $6, all the flows in which particles are here considered are uni- 
directional, so that locally the velocity field is approximately a simple shear. If 
the shear is non-uniform the magnitude and direction of the transverse velocity 
gradient may vary across the flow. Except for local disturbances caused by 
irregularities in the boundary surfaces this definition covers fully developed 
laminar flow through pipes and channels of uniform cross-section and, with 
slight modification, that in a Couette viscometer. In  $ 6  is considered the motion 
of an extremely small particle in a flow which is not locally a simple shear but 
which is essentially three-dimensional, for example that in a steadily diverging 
pipe. 

The motion of a dilute suspension of small neutrally buoyant spheres in the 
Poiseuille flow in a tube of circular cross-section has been studied by Segrt5 & 
Silberberg (1961, 1962). They found that the spheres slowly migrate laterally 
until they are concentrated in an annular region distant 0.6 tube radii from the 
axis. This appears to be a property of an individual sphere in such a flow, inde- 
pendently of the presence of the others, and the rate of migration agrees with that 
expected from dimensiorial considerations to arise from the inertia of the fluid. 
The Reynolds number based on tube diameter was of order 30, whereas that 
based on particle size was less than unity. Such a migration across the streamlines, 
though to the centre of the tube, had previously been suggested by several 
writers (e.g. Starkey 1956; Scott-Blair 1958). Goldsmith & Mason (1961a, b )  
found no migration of rigid spheres, disks or rods in Poiseuille flow even very 
close to a wall. In  this case the Reynolds number based even on tube diameter 
was small compared to unity. Flexible rods, and liquid drops, on the other hand, 
always migrated towards the tube axis. A similar effect has been observed by 
Christopherson & Dowson (1959) when a large, heavy sphere falls slowly through 
a stationary viscous liquid in a vertical tube; they calculated the flow in the 
narrow region between the sphere and the tube wall using a lubrication approxi- 
mation, and showed that it would fall vertically whatever the distance of its 
centre from the tube axis. An eccentric position corresponds to a maximum rate 
of fall, and they found that whatever the initial conditions the sphere migrated 
laterally until i t  assumed this position. 

The same negative arguments that Saffman used about the effect of tube walls, 
non-uniform shear, etc., will be shown to be applicable here. The explanation for 
this migration is not to be found within the context of the Stokes equations-it 
must be due to non-linear effects of some kind, inertial or non-Newtonian forces. 

Most of these results apply to spheres or ellipsoids of revolution. Goldsmith & 
Mason (196lb), however, found no migration even for rigid disks and rods of 
circular cross-section, so the questions arise: If  the particle is rigid but of general 
ahape, does the same qualitative picture hold? In  the limit of zero Reynolds 
number are the orbits still closed? In a non-uniform shear might a long thin 
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unsymmetrical particle spend more time with one end aligned upstream rather 
than downstream? These questions are viewed within the framework of the 
Stokes approximation to the equations of motion, and in the absence of external 
forces acting on the particle, and assuming it is strictly rigid, so any results are 
independent of the Reynolds number of the motion, provided only it is very much 
less than unity. It is found that there exist shapes of body for which migration 
and preferential orientation do take place, and also that the orientation of a 
particle does not always describe a closed orbit, relative to axes moving with its 
centre. These effects, when present, will dominate over those due to the inertia 
of the fluid or to small external disturbances, but they are absent from the shapes 
on which accurate experiments have actually been performed. It is shown that 
for almost any body of revolution (including particles of the shape of the disks 
and rods used by Goldsmith & Mason), the orbit will be accurately closed, and no 
migration will occur in any unidirectional flow. The same result usually holds if 
there is an external force on the particle acting parallel to the tube axis. This 
occurs when there is incomplete density matching between the particle and the 
suspending medium and the tube is mounted vertically. 

If the Reynolds number based on the tube diameter is appreciable, the motion 
of a sufficiently small particle will still be determined primarily by the Stokes 
equations of motion in terms of the local rate of shear. This is investigated in 
$43-5. The inertia forces are negligible because they are proportional to the 
square of the particle size. If lateral migration is predicted even in the absence 
of inertia, and there are rigid bodies for which this is so, it  will dominate over 
effects due to the residual inertial terms. This has not yet been observed experi- 
mentally. For spheres, however, migration cannot arise in this way, and that 
observed by Segr6 & Silberberg (1961) must be accounted for by invoking the 
neglected inertia terms or non-Newtonian effects. That is outside the scope of this 
paper. When the overall Reynolds number is also small compared to unity, on 
the other hand, the prediction of no migration for most rigid bodies of revolution 
is well verified experimentally (Goldsmith & Mason 1961 a, b) .  For flexible 
particles and liquid drops migration occurs and is presumably associated with 
their elastic properties. 

For rigid particles it is possible to deduce from the Stokes equations some 
answers by quite general arguments. $ 2  will be devoted to a detailed statement 
of Saffman’s argument for non-uniform unidirectional flows. In  $ 3  t b  context 
will be specialized to uniform simple shear, to discuss the limiting orbit as the 
particle size tends to zero, and the equations of motion are deduced for general 
bodies. In  $5 4 and 5 some illustrative examples are given of special shapes which 
do exhibit migration. In  $ 6 a solution is given for the orientation of a general 
body of revolution in a three-dimensional uniform time-independent shear. 
Unfortunately when the rate of strain tensor in the neighbourhood of the particle 
is varying with time the solution cannot be determined explicitly except for one 
special case and this restricts the usefulness of the result. The special case 
describes the orientation of an infinitesimal particle in a general (non-unidirec- 
tional) viscous flow, provided the structure of therate of strain tensor is effectively 
constant along the streamline along which the particle moves. The magnitude 
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of the rate of strain may vary, but a simple re-definition of the parameter 
describing time reduces the problem to the case when the magnitude is constant. 
The particle describes the same orbit, though a t  a different rate. There is either 
an asymptotic orientation of the axis of the particle or an asymptotic plane in 
which it rotates. This contrasts sharply with the orbits calculated by Jeffery 
(1923) for a simple shear. Prom this standpoint simple shear is a very special, 
though important, case, and any slight three-dimensionality in a unidirectional 
flow which is maintained along a streamline completely alters the character of 
the particle orbits. The arguments of this paper are necessarily somewhat dis- 
jointed, and for convenience the main train of reasoning is restated in 5 7, together 
with the principal conclusions. 

2. The mirror-symmetry time-reversal theorem 
2.1. The following result holds for general bodies in any unidirectional flow: 
When moving in a steady unidirectional shear flow at small Reynolds number 

under the action of viscous forces alone, to every orbit of a givenjinite rigid body there 
corresponds one of the body of opposite mirror-symmetry. The corresponding orbits 
are ‘mirror images’ obtained by ref exion in a plane perpendicular to the streamlines, 
but are traversed in opposite senses. This has probably been known in essence for 
some time, but the author has not seen it explicitly in print, and accordingly a 
proof is given here. 

It follows very simply from the general principle of invariance under changes of 
mirror-symmetry, and the linearity of the Stokes equations. At low Reynolds 
number the Stokes approximation gives the velocity field near a finite body, and, 
though it is not necessarily uniformly valid, it can be used to calculate the forces 
on the body. The full Navier-Stokes equations are invariant under the reflexion 
of velocities, forces, and co-ordinates in (say) the (xz, x3)-plane, provided the 
pressure is left unaltered. The Stokes equations have the additional property that 
under time reversal, i.e. reversal of all velocities and forces, they are still 
satisfied, and if the resultant forces and couples on the body vanished, they still 
vanish. But reflexion in the (x2, x,)-plane and velocity reversal together leave 
unaltered a velocity field at  large distances which is parallel to Ox, and inde- 
pendent of xl. The relative positions of points on the body become those of the 
body of mirror-symmetry, and the orbit of each becomes its time-reversed mirror 
image. 

Stated analytically, the argument considers a body, whose surface is made up 
of points P, with Cartesian co-ordinates ra(P, t ) ,  moving in a velocity field u, so 
that 

, ,  

At the surface of the body 
dr a - = u,, 
at 

and at large distances from it 
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The resultant force and couple on it are 

and 

Consider the body whose surface is made up of points P', with co-ordinates 
r,(P',t) = I'r,(P, - t) ,  where 

rr, = -rl, Fr, = r,, rr, = r3, 

moving in a velocity field uL(P', t )  = - ru,(P, - t )  with pressure 

p'(P', t )  = -p(P, -t). 

Then i t  is easily verified that all the above equations of motion are satisfied also 
by the primed variables, in particular 

u; u(x27 x3), us> uA * '7 
at large distances from the body. But the co-ordinates 

ra(P',t) = u,dt = - Fu,(P, - t ) d t  = Fra(P, - t )  

describe the position at successive times of the configuration {P'} of opposite 
mirror-symmetry to {P} and show that it describes the image orbit in the reverse 
sense. 

2.2. This theorem is of particular application to bodies of revolution, for these 
have the property that when reflected in any plane containing their axis they 
coincide with their image. If, therefore, a t  any moment in the orbit of such a 
particle the axis lies in a plane perpendicular to the streamlines, the previous and 
subsequent parts of the orbit must be mirror images in this plane, for these two 
parts have this one moment in common. If, at any subsequent moment, the axis 
again lies perpendicular to the streamlines the orbit can also be divided into two 
parts, mirror images in a second plane parallel to the first. But this means that 
the whole orbit can be generated by successive reflexions in two parallel planes, 
and it must be accurately periodic, with period twice the time taken to traverse 
that part which lies between them. 

This statement is independent of the variations of velocity at right angles to 
the undisturbed streamlines, even in the presence of rigid walls parallel to the 
streamlines. Thus, provided only that there is a basic reversing motion, so that 
the axis twice lies at right angles to the basic flow, a complete answer can be given 
to the questions posed in the introduction for any neutrally buoyant axisym- 
metric body in any parallel flow. Taken in a co-ordinate frame moving with 
suitable velocity the orbits are closed, there is no more time spent pointing 
upstream rather than downstream, and any tendency to drift across the stream- 
lines in one part of the orbit is accurately cancelled by a reverse tendency in 
another part. This has been verified by Goldsmith & Mason (196lb) for rigid 
spheres and rods in the neighbourhood of a wall. 

1' s 
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2.3. This theorem may be extended in two ways. If there is a constant external 
force acting on the body (e.g. gravity), in the direction of the basic streamlines, 
exactly the same statements hold. For under co-ordinate reflexion in the (x,, x3)- 
plane, the x,-component only of all forces on the body is reversed. Under time 
reversal all force components change their sign so under both transformations 
the x,-component is unaffected. If the resultant force is in this direction, and if 
there is no resultant couple about it, all the consequences of a periodic orbit follow. 
This rules out an explanation of Christopherson & Dowson’s results by the Stokes 
equations, for the resultant force on the sphere was parallel to the tube axis, so 
that lateral motions are excluded by this theorem, provided the walls of their 
tube can be taken as accurately vertical. If gravity does not act along the 
undisturbed streamlines the above theorem is not true. An instance of this 
has been given by Bretherton & Rothschild (1961). Thus in the usual arrange- 
ment of a Couette viscometer particles must be accurately matched in density 
to the surrounding liquid if gravity is not to introduce important qualitative 
effects. 

Secondly, the theorem is also easily proved when the undisturbed streamlines 
are not strictly unidirectional, but can be cast in terms of orthogonal co-ordinates 
(A,, A,, A,) as the curves A,, A, = const., where the element of length corresponding 
to infinitesimal changes ah,, ah,, &A, is independent of A,. The most important 
case is when the streamlines are circles with centres on an axis of symmetry, 
as in a Couette viscometer. The basic flow and geometry is then independent of 8, 
the angular displacement about the axis, and reflexion corresponds to changing 
the sign of 8. 

Finally i t  should be noticed that the theorem has only been proved if the 
bounding surfaces of the basic flow are rigid, and stationary. In  particular cases 
extensions to free or moving surfaces may be made, but each case must be 
examined on its merits. If more than one particle is present the theorem may be 
applied only when there is axial symmetry of the particle configuration as a 
whole, e.g. two interacting spheres which are otherwise isolated. 

2.4. This theorem shows that the orbit of the axis of a body of revolution is 
strictly periodic, and that lateral migration will not occur, provided only that its 
axis lies at  least twice in a plane perpendicular to the streamlines. The nub of the 
argument is the existence of the basic reversing mechanism. This might cease 
very close to a wall, or in the central region of a parabolic profile but for sufficiently 
small particles it will be present in the remainder of the flow if it is present in a 
uniform shear in the absence of walls. In  the limit as the particle size tends to 
zero, the broad features of the particle orbit must become dominated by the local 
flow pattern, which is a uniform simple shear. Reversals certainly took place 
for the experiments mentioned in the introduction, for Taylor and Manley & 
Mason examined them explicitly, and for a sphere any diameter is an axis of 
symmetry. In  the next section it will be shown that the motion of almost all 
bodies of revolution in a uniform simple shear is the same, so far as orientation is 
concerned, as that of some ellipsoid, for which reversals certainly occur. However, 
there are certain rather extreme shapes, including some bodies of revolution, in 
which the particle moves directly into one of two opposite orientations, and 

I9 Fluid Mech. 14 
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remains there, migrating steadily across the streamlines. A small particle in the 
parabolic velocity profile in a pipe or between two parallel plates will migrate 
either to the centre or to  the walls. In  these regions the shear cannot be regarded 
as even approximately uniform, and migration will either be halted or reversed. 
If it is merely halted in either of these regions, the result will be an ultimate 
concentration of particles there. Prediction of their detailed behaviour under 
these circumstances is not attempted, and these suggestions remain speculation. 
The overturning motion might also be halted everywhere in a vertical tube if 
there were a density difference between the particle and the suspending medium 
and the particle were asymmetric between its two ends. Differential forces 
associated with the sedimentation of the particle as a whole might be adequate to 
overcome the effects of the shear. It is clear, however, that when migration 
occurs, even in a uniform shear, i t  is likely to prove of some importance, so in the 
next three sections attention is concentrated on neutrally buoyant particles in 
a uniform shear away from rigid walls, so that their motion (except for trans- 
lation down the streamlines) depends only on their orientation, and is independent 
of spatial position. 

3. The equations of motion in a uniform shear; particle characterization 
3.1. A general rigid particle is moving under no external forces in a motion 

compounded of a straining motion and a rotation, the rate of strain tensor and the 
vorticity being independent of position. Because of the linearity of the Stokes 
equations its rate of rotation w, can be expressed as the sum of the rotation of the 
fluid 0, (half the vorticity) and a term depending linearly on the rate of strain, 

Throughout what follows summation over the range 1 , 2 , 3  is tacitly assumed for 
every repeated Greek suffix, whereas for a Roman suffix it will always be 
explicitly indicated where required. The above expression, which is with reference 
to axes instantaneously coinciding with directions fixed in the body, is a tensor 
one, and does not depend for its truth on any particular choice of the rate of 
strain tensor EBy. Busy is therefore a Cartesian tensor of rank three, which may be 
regarded as symmetric between the suffices /3 and y ,  and which is a property of 
the body alone. In  particular consider the simple shear u = G(r.n)l where 
1, m, n, are a right-handed triad of unit vectors, 1 being along the streamlines, 
m along the vortex lines, and G is a constant. Then 

3.2. Certain facts about B+, can be deduced at once from considerations of 
symmetry. If a body is invariant under rotations about Ox, through a right 
angle, the transformation matrix being 
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then the corresponding B,,, must be connected by the following relations 

Bl12 = B113 = - B112, 

B211 = B311 = - B211, 

B222 = B333 = - B222,  

B123 = - B132, 

B212 = B313, 

B233 = - B332 = - B233' 

B122 = B133, 

B213 = -B3127 

The motion is thus determined by four independent constants, Blll, B122, B212, 
B,,,. Under co-ordinate transformations which involve a change of reflexion 
symmetry, e.g. that with matrix 

$ 1  . 

angular velocity is an axial vector (the first and third components change sign) 
and if the body is also invariant under this transformation the tensor character 
of equation (1) demands that 

Bill = BlZ2 = Bzlz = 0. 

If, therefore, a body is unaltered by rotation through a right angle about an axis, 
and by reflexion in a plane containing that axis, the number of constants which 
describe its motion is reduced to one. An important special case of this class is a 
body of revolution. Note that there is no condition on symmetry about a plane 
perpendicular to the axis. With axes fixed in space, but chosen so that Ox, 
instantaneously coincides with the axis of the body, and Oxlx2 with a plane of 
reflexion symmetry, the equations of motion reduce to 

w1 = ~G{n213-n312}, 

w2 = &G{( 1 + B )  n311 - ( 1  - B)  n,.?,}, 

w3 = a G { ( l -  B)  n,12 - ( 1  + B)  n,l,}, 

and provided 1BI < 1 ,  these are exactly those given by Jeffery for an ellipsoid of 
revolution with axes in the ratio 

{( 1 - B)/(  1 + B)}J: 1 :  1. 

It will be shown ($5.3) that, for some very long bodies, (BI may be greater than 
unity, but with this proviso there follows the general result: 

With the exception of certain very long ones, the motion in a uniform simple shear 
of u rigid body of revolution is mathematically identical, at lea& in so fur as rotation 
is concerned, with that of some ellipsoid of revolution. 

This has been confirmed for long circular cylinders in a uniform shear by 
Trevelyan & Mason (1951). 

3.3. One further class of specially symmetric bodies is worth considering, 
those which are invariant under separate reflexions in two perpendicular planes. 
This includes members of the previous class as a special case, when the body is 
also unaltered when one plane is rotated into the other. The equations of motion 
then reduce to 

w2 = ~ G { ( ~ + B 2 ) n 3 1 , - ( ~ - ~ ~ ) n l 1 3 ) ,  (3) 

19-2 
i 

gG{(1+Bl)n,13-(1-B,)n312), 

= gG{<l + B3) n1 l 2  - ( l -  B 3 )  n2 II}, 
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where B,, B,, B, are three independent arbitrary constants. Reflexion symmetry 
about a third plane at right angles to the other two does not place any further 
restrictions on these constants. For an ellipsoid of axes a, b, c, 

b2 - c2 c2 - a2 a2- b2 
B 1 -- - b 2 _ t C 2 ’  Bz = m) B3 = m3 

implying the relation 

In  general, therefore, the motion of bodies invariant under reflexion in two, or 
three, axes is not the same as that of some ellipsoid. 
3.4. There remains the question of whether there exists a body for which the 

18 coefficients B,, can assume arbitrarily assigned values. Three may be fixed by 
choosing suitable axes, but the other 15 are determined by the geometry of the 
body. To throw further light on this it is worth considering a model which is 
somewhat artificial, yet could in principle be realized to arbitrary accuracy, for 
which the equations of motion can be obtained fairly easily, and which retains 
sufficient generality to be expected to show qualitatively the main features of 
actual bodies. An assembly of N small ellipsoids are rigidly connected by long 
rods of negligible resistance. The forces on the ellipsoids are given by the difference 
between the velocities of their centres and the local velocity of the undisturbed 
fluid, and if the connecting rods are sufficiently long these forces can be calculated 
without reference to the presence of the remainder of the assembly. The couples 
on the individual ellipsoids are negligible, provided none of the overall dimensions 
of the assembly are too small. The requirements that the relative separations and 
orientations should remain unchanged, and that the resultant force and couple 
on the assembly should vanish, yield the equations of motion. 

The derivation of these is straightforward but adds nothing to the argument 
presented here, so is omitted. The results assume a simple form when all the 
ellipsoids are spheres, at the points Pi(i = 1, . . . , N ) .  The force acting a t  Pi is then 
a positive constant, Ai, say, times the local relative velocity between the 

assembly and the fluid. If r$ is the position vector of Pi relative to a point Po fixed 
in the body, PO can be chosen so that 

B,B,B,+B,+B,+B, = 0. 

N 

i= 1 
x Air$ = 0. 

PO is thus the ‘centroid’ of the spheres, and if C, + C,, C, + C,, C, + C, are their 
‘principal moments of inertia’, i.e. axes are chosen so that 

ZAirir; = XAirir! = ZAirir; = 0, 
i i i 

C, = Air:,, C2 = x Airi2, C, = Z Air;’; C,, C,, C, > 0,  
i i i 

the equations of motion are 
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which are identical with those describing the motion of a real ellipsoid, of semi- 
axes in the ratio .JCl : 2/C2 : 4C3. This model is thus too restricted for our purpose, 
and it is necessary to  consider ellipsoids, instead of spheres, a t  the points Pi. 

The force on a single ellipsoid in a uniform stream is given by Lamb (1932, 
p. 605). This depends on the orientation, being, for a flat .circular disk edge on, 
only 3 of that when broadside on. The resistance at Pi must be described by a 
positive-definite symmetric second-rank tensor, whose components relative to 
axes fixed in the assembly are constant. This would be true even if the ellipsoid 
there were replaced by a body of general shape of size very small compared to the 
separation between the points Pi. The ' centroid' of such an assembly of resistances 
is meaningless, and although the analysis can be carried through quite straight- 
forwardly it is difficult to see what the general form of the tensor Ba,, is. However, 
departures from isotropy of the resistance of bodies for which they have been 
calculated are small, the largest being for a long thin ellipsoid of revolution when 
the lateral resistance is twice the longitudinal. This is an extreme case, so it is not 
unreasonable to write the resistance tensor 

Af, = Ai8,, + aa;,, 

and to restrict attention to the case when a is small. A$ is positive, but a;,, = a;, 
is arbitrary. 

Again taking Po as the ' centroid ' and the axes as the 'principal axes ' of the 
isotropic part of the A;,, the equations of motion become, to first order in a, 

where e,,, is the isotropic antisymmetric tensor of rank three. For given r l  and Ai 
there is no restriction on the anisotropic part of the resistance at Pi, other than 
that it should be symmetric. The core 

r i  a$ r: 
i 

of the last term of equation (4) can have any value symmetric between the 
suffices u, r and v, s. It is thus apparent that the general form of the tensor 
describing the motion of a body in a uniform shear that is consistent with this 
model is 

where burs is arbitrary, but in some sense small. 
Though departures of B,,, from that for an ellipsoid are small they may, in 

certain circumstances, exert a crucial influence on the orbits of such particles, 
leading to qualitatively quite different behaviour. The equations of motion 
(equation (I)) are non-linear in the direction cosines la, ma, n&, and except for a 
slight generalization given in $ 6  of the results given by Jeffery (1923) for ellipsoids 
of revolution, the author has been unable to find any interesting analytic solu- 
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tions. However, the arrays of ellipsoids considered in this section, though very 
unrealistic models of any particles likely to be encountered in practice, can assist 
our understanding of some of the qualitative effects of non-zero baTS. In the next 
section attention is turned to one particular array, to illustrate this. 

4. An asymmetric long thin particle yielding equilibrium orientations 
4.1. A characteristic of the equations of motion found by Jeffery for ellipsoids 

of finite axis-ratios in a uniform simple shear (equation (3)) is that there is no 
orientation in which the particle ceases to rotate. The constants B,, B,, B, are all 
less than unity, and there is no real position of equilibrium. This, however, is not 
true for more general shapes of body. Consider, for example, the particle il- 
lustrated in figure l. An array of four rigidly connected ellipsoids form a square of 

2r - 

1 1 

FIGURE 1. An array of ellipsoids which may remain in an equilibrium orientation 
in a shear flow. 

2' a- 
J&/ ; . --$& 

I -'Po x' 
.HO 14 ./. 

FIGURE 2. The forces on the array when in an equilibrium orientation. The array is 
moving as a whole across the streamlines of the basic shear. 

side 2r, while distant 26 from the centre of the square, and normal to its plane, is 
a sphere. The axes of the ellipsoid do not coincide with the principal axes of the 
array, and their resistance will be taken as 

The resistance of the sphere will be taken as 4A.  
The constants C,, C,, C, are seen to be 8AZ2, 4Ar2, 4Ar2 respectively, and if 

a = 0 the array will move like an ellipsoid of revolution with axes in the ratio 
421 : T : r .  If tc > 0, however, a new element enters the situation. If there is a 
velocity difference between the ellipsoids and the local fluid in the direction Ox1, 
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there will be a transverse force in the x,-direction acting on them. If the array is 
long and thin, i.e. rll is small, such a velocity difference must exist whenever the 
long axis is inclined to the (xi, xi)-plane (figure 2 ) ,  for then the sphere and ellip- 
soids are in regions of substantially different fluid velocity, but their separation 
must remain unchanged. This transverse force can exert a comparatively large 
moment about the centre of the long axis and this can halt the overturning 
characteristic of the array which would dominate if a = 0. 

4.2. To see this we consider the equations of motion. Writing r2/2l2 = p ,  it  is 
straightforward to verify that equation (4) becomes 

w1 = +G n 2 ~ 3 - n 3 ~ 2 + - ( n 2 ~ l + n l ~ 2 ~ ] ,  cc 

{ l + P  

I P a  
0, = +G n,~ ,  - n,~, + k P  (n,t, +n,~,) - __ (n,~, + n312) . I l + P  1+P 

8 J 
FIGURE 3. The Euler angles (6,  $, +) defining the relative orientations of the axes Oxyz of 
the body and the axes Ox'y'z' fixed in space. The undisturbed velocity field is 

UI = Gyl. 

There is an orientation of the array in which the Euler angles defined in 
figure 3 are e=o,, 2=7 +=--in 2 7  

and (Z,, Z,, 1,) = (COS 6070, -sin e,), 

(ml> n27 m3) = (O7 ' 9  '1, 
(nl, n2, 12,) = (sine,, 0, COB e,), 

and the angular velocity vanishes. This is when 0, satisfies 
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which has two real roots in 0 < 8, < n if 
P a 2  

(1+2p)2 < G. 
Thus provided the array is sufficiently long there are a t  least two orientations in 
which rotation will cease. If the axis of the array is reversed there are two more 
equilibrium orientations at  

(0, $, 34 = (n - 4l, - +n, Qn) 
and four more at the ‘ mirror-image ’ positions 

(n- B,, in, in), (eo, - an, in). 
More detailed analysis reveals that none of these eight equilibrium orientaOions 

is completely stable to infinitesimal disturbances, i.e. if the orientation of the 
particle is altered slightly it will move further away from equilibrium. However, 
in the next section we will give an example of a body which not merely has 
orientations for which the rotation ceases, but which moves directly into one of 
them from almost any initial position, and remains there. 

The forces on the array in an equilibrium orientation are illustrated in figure 2. 
It should be noted that the whole array is moving sideways across the undisturbed 
shear at a rate which to first order in a is +Glasin8,, so if the particle were to 
remain in the equilibrium position it would migrate steadily across the undis- 
turbed streamlines. 

5. Bodies of revolution in a simple shear 
5.1. In  the previous section the alignment of the particles in an equilibrium 

orientation depended on a transverse force arising from the asymmetry of the 
particle about its axis. This asymmetry is not necessary, however, to produce 
such behaviour. It also arises in bodies of revolution. In  § 3 it was shown that the 
orientation of a body of revolution is governed by equation (2) which involves one 
arbitrary constant B. If IBI < 1 the orbit (in terms of the Euler angles defined in 
figure 3) is 

Cot2 8 = p2( 1 - k2) /( Cot2 (El) - +k2) ,  cos2$ = k2(l+p-2cot28), 

where p2 = (1 + B)/( 1 - B) and k2 is a constant of integration. This result is taken 
with a change of notation from Jeffery (1923). If IBI > I, however, it  must be 
replaced by 

cot2 8 = pf2( 1 - k2) I( coth2 ( ~ Gp’t 1 - k2), cos2 fj = k2{1- (p’)-Z cot2 B}, 

where p’2 = (B+ l)/(B- 1). This is no longer periodic, and as Gt -+ co the axis 
tends to a position fj = & in, cot 8 = +p’, which is at right angles to the vortex 
lines, making an angle ? cot-lp‘ with the streamlines. Thus, there are two stable 
equilibrium orientations, and as Gt -+ - 00 two more unstable ones are found in 
the image positions on reflexion in a plane perpendicular to the streamlines. The 
result of $2  that the orbits are periodic breaks down in this case because of the 
failure of the basic reversal mechanism. 

1 -p‘2 
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5.2. It is not possible to  construct a strict body of revolution from an assembly 
of several ellipsoids, unless they are all aligned along the axis. But for any body 
which has reflexion symmetry about two perpendicular planes and is invariant 
when one such plane is rotated through a right angle into the other, the tensor 
B,,, depends on only one constant B, and the equations for the rotation of the 
body are formally identical with those for a body of revolution. 

We consider the array consisting of a sphere a t  the point ( - I ,  0,O) of resistance 
4A, and ellipsoids at  the points forming a square of side 2r, 

( k r , ~ ) ;  (hr ,  - r ) ;  (1, - r , r ) ;  ( I ,  - r ,  - r ) ,  

with resistances which have an isotropic part of magnitude A ,  and an anisotropic 
part described by the tensors 

respectively. 

These correspond to ellipsoids symmetrically placed about the axis of the array. 
Careful use of equation (4) verifies that such an assembly does indeed move 
according to equations (2)with a constant B given by 

where, as before, we have written r2/212 = p .  
If a vanishes the array behaves like an ellipsoid of revolution with axis ratio 

J p ,  and continues to rotate indefinitely in a uniform simple shear. But if a is 
strictly greater than zero, however small, there are values of p which make 
IB I > 1.  The condition for this is 

In  this case the behaviour is completely different, and there are two orientations 
of stable equilibrium inclined at a small angle to the streamlines. In  these 
positions the lateral migration does not vanish, but is 

v = gaGr. 

In  a slightly non-uniform shear the action of the walls in selecting particles 
drifting in one direction may result in a preferential migration to the centre, or to 
the walls, and in alignment upstream rather than downstream or vice versa. 

The cessation of overturning if the array is very long and thin can also be 
predicted by considering the sign of the external couple required to prevent the 
array rotating when it is held with its axis parallel to the streamlines, but free to 
move laterally. The forces under such circumstances are illustrated in figure 4. 
There is a couple of magnitude 4AGr2 on the four ellipsoids which is balanced by 
that associated with the sideways force associated with the anisotropy of the 
resistance of the ellipsoids. If the array were not free to move laterally this force 
would be 4aAGr, but, because no net force can act on it, it  actually migrates with 

p < 2Jcz2. 
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speed taGr to fist order in a. Taking moments about the point (1, 0,O) it is clear 
that no external couple will be required to maintain equilibrium in this position if 

rll = a. 

If r / l  exceeds this value the transverse force is not sufficient to prevent continual 
overturning, but for smaller values of r/l the array tends to move away from 
alignment along the streamlines in the opposite sense. This movement must be 
checked before the axis of the array makes a substantial angle with the stream- 
lines, but it is associated with the existence of an equilibrium orientation. 

FIGURE 4. The forces on the array of ellipsoids described in $5.1, when held with its axis 
parallel to the basic streamlines. It is moving sideways with velocity +Gr. 

c 

1 c 5 

FIGURE 5. A long body of revolution for which (BI > 1, so that it has two opposite 
stable equilibrium orientations in a uniform simple shear. 

5.3. In  view of the importance of this effect i t  is of value to  show that it may 
also exist in bodies strictly of revolution. Exact solutions for the velocity field 
round a body in a shear flow at low Reynolds number are known only for a sphere 
and an ellipsoid. If one assumes the body to be slender, one can obtain an approxi- 
mate solution by a method similar to that of Hancock (1953), but this is unsatis- 
factory for a number of reasons and is omitted here. Another approach is to 
demonstrate the existence of a body of revolution on which, when held so that it 
cannot rotate in a simple shear with its axis parallel to the streamlines, there is 
a lateral force. If two such bodies are connected by a sufficiently long and thin 
rigid rod, as in figure 5 ,  the constant B describing the combination will be 
numerically greater than unity, and the orbits will be quite different from those 
of Jeffery. 

The simplest such body showing a lateral force is that with surface given in 
polar co-ordinates by 

r = a{l+aP,(p)}, a< 1, 

where p is the cosine of the angle made with Ox, by the radius vector, and P3(p) is 
the Legendre polynomial of degree 3. It is necessary for the degree of this poly- 
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nomial to be odd, otherwise the lateral force vanishes by symmetry (as for an 
ellipsoid). The surface r = a{l + aP1(p)) is merely a sphere displaced through a 
distance aa along Oxl, so will also yield no lateral force. Straightforward, though 
tedious, algebra suffices to show that the velocity field round the body is 

where U ,  V ,  W ,  are harmonic functions and 

These velocities satisfy the Stokes equations, vanish on the body to first order in a, 
and represent a simple shear as r -+ a. The only contribution to the couple on it 
comes from that part of the velocity field which varies as l/r2, and is 

477ya3C i- O(a2) 

in the same direction as the vorticity. The force comes only from that part which 
varies as I/r ,  and is +qa2aG+ O(a2) 

parallel to Ox,. Here 7 is the liquid viscosity. The minimum length of connexion 
for the value of IBI for the combination to be greater than unity is around 28a/3a. 

The particular body of revolution considered here is symmetrical between its 
two ends, and cannot be expected to show any tendency to lateral drift, even in 
the equilibrium orientation. But in general the total force on an asymmetrical 
body of revolution will only exactly vanish if it  is moving sideways as a whole. 
This can be seen for the arrays of ellipsoids in figures 2 and 4. Such motion is a 
function of body shape and orientation alone, and if the orientation orbit is 
periodic and symmetrical the net displacement over a period must be zero. But 
if an equilibrium orientation is attained the motion will be systematic, and 
although slow will be of dominant importance. 

However, it is very doubtful whether such a combination with IBI > 1 could 
in practice be constructed. The difficulty is that if the resistance of the connexion 
is to be negligible it must be extremely thin indeed. The resistance to lateral 
motion of a rod of length I and small radius d is of order $/log ( l / d ) .  The velocity 
field round the almost spherical bodies at  the ends has a component of order 
Ga2/2 perpendicular to the connexion, and in a direction assisting the overturning 
of the combination. This can only be neglected if 

Gya21/log (lid) < +qa21aG - 8qaSG; 
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in other words, if l/log(Z/d) < a. These are order of magnitude estimates, and it is 
not easy to calculate more precisely the multiplicative constants. A factor of 2 is 
of considerable importance, being associated with a ratio of 10 in the permissible 
thickness of the combination. The author’s private guess is that this thickness 
must be too small to be consistent with rigidity. 

5.4. This calculation underlines the unrealistic nature of the model of a general 
body which was used in Q Q  3 and 4. The results of Q 4 and of this section must be 
taken only as existence theorems about possible behaviour. They are undoubtedly 
extreme examples, probably of little practical importance. However, they are 
given to indicate the wide qualitative variation in the possible orbits of a general 
body, and as a warning against the assumption that all particles will move in 
orbits closely resembling those calculated by Jeffery . 

6. Bodies of revolution in a three-dimensional uniform shear 
6.1. It is perhaps of interest that a solution of the equations of motion for a 

body of revolution may be given for a uniform shear which is not simple, in which 
the basic flow is described by a constant three-dimensional rate of strain tensor E, 
and a rotation a. For simple shear E represents plane strain perpendicular to and 
numerically equal to the rotation. As shown in Q 3,  the tensor B,,, describing the 
body depends on one constant B, and the components of angular velocity relative 
to fixed axes which momentarily coincide with principal axes in the body are 

~1 = i21, ~2 = i22 + Be31, w3 = Q3 - Bel2. ( 5 )  

As the body rotates, the tensor B,,, loses this simple form but a simple trans- 
formation still enables the direction of the axis to be calculated. If x ,  is a vector 
always in the direction of the axis of revolution (so that in the above co-ordinates 
x2 = x3 = 0 momentarily), but of length still to be specified, then 

x2 = w3x1-w1x3 = i23x1-Be,lxl ,  

x3 = w1x2-w2x1 = - i22xl -Be3,x l .  and 

We now deJine xl by xl = - Bel lx l ,  so that all these three equations are summed 

2, = e,,, i2,xy - Beayxy .  

This is derived only if at each moment the axes are rotated to coincide with some 
principal axes of the body. But it is a vector equation, so true in any co-ordinate 
frame, including that in which the components eaByi2,, eay of a, E appear as 
constants. The problem is thus reduced to a linear one, for which i t  is easy to write 
down the general solution. 

We look for vectors satisfying for some u, 

so that x ,  = 8, eUt is a solution of equation (6). CT is then given by the roots of the 
determinantal equation 

[Q-BBE-cTII = 0. 
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This is an algebraic equation with real coefficients, so either all three roots are 
real, or one is real and the other two are complex conjugates. These cases will be 
considered separately. 

If the ejgenvalues are real, being h > ,u > Y, to each corresponds an eigenvector 
Xu, &,, Nu.  These are not necessarily orthogonal, as G2 -BE is not symmetric, 
but if the eigenvalues are distinct, they are linearly independent. The general 
solution to equation ( 6 )  is 

where C, D, E ,  are arbitrary constants. As t +- co, x, N C2,eht, because h is the 
largest of the three roots, and the axis of the body tends to a position parallel to 
2,. This, apart from the freak C = 0,  is to within a change of sign independent of 
the initial position of the body. Two equal eigenvalues are also highly unlikely, as 
the eigenvalues depend on the value assigned to B,  and thus on the individual 
particle considered. 

If two eigenvalues are complex, ck ic ,  say, with associated complex eigen- 
vectors 8, & ig,, the general solution of equation (6) is 

h 

X ,  = CL, eht + a { ( ~  + i ~ )  (8, + ii,) e(c+iotj. 

The behaviour as t + 03 depends on whether h is greater than, equal to, or less 
than 6. Because of the incompressible nature of the basic flow h + 2c = 0. If 
h > 0, 5 < h and x, N Cg,eht and the orientation tends to a definite direction. 
If, on the other hand, 6 > 0, 

x, N LZ{(D + i ~ )  (2, + i2,) e(c+iot), 

and the axis rotates in a plane generated byd,,  2, with period 27~16. This be- 
haviour is quite different from that calculated by Jeffery in a simple shear, for 
here there is one asymptotic plane in which the orbit lies. 

Simple shear is a special case. Then both the rate of strain and rotation 
matrices E, G! are singular, with the same null space. So BE-G2 is always 
singular, and the characteristic equation has at least one zero root. The rate of 
strain is numerically equal to the angular velocity, so the condition for real roots 
is (BI > 1 and one of these must be positive as the sum of the three roots vanishes. 
As before there is an asymptotic orientation, as was pointed out in the previous 
section. More usually, the roots are complex, 0,  ic, -is, say. The general solution 
is then x, = ~ 2 ,  + ~ { d ,  cos (ct + y )  - 2, sin (8 + y)>. 

As t + co neither term dominates, and the orbit is always dependent on the initial 
conditions. As it is the direction of x, which is important, except for the phase 
factor y there is a singly infinite family of possible orbits determined by the 
ratio DIC. 

A sharp distinction must thus be drawn between shear flows in which the 
motion near a point is locally a simple shear, and those where it has a slight three- 
dimensional character. The first case is probably more important, as it includes 
the Couette viscometer, and the flow down any parallel-sided pipe. In  a diverging 
pipe, on the other hand, the three-dimensional character of the flow may be vital, 

h 
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at least if the particle remains in it long enough. For it will determine the ultimate 
orientation independently of its initial value, in complete contrast to what 
happens in a simple shear. Small imperfections in a locally two-dimensional flow 
will not necessarily result in a drift through the orbits calculated by Jeffery. Only 
if an imperfection moves down the streamlines at the same speed as the particle 
will it  act for long enough to produce a systematic reorientation. Otherwise only 
small random drifts which are outside the scope of this analysis will result. 
Whether, in mean, these drifts would be exactly self-cancelling is a difficult 
question. 

Equation (6) is identical to that describing the motion of one end of a line 
element of fluid with the other end at the origin under a rate of strain tensor BE, 
and rotation a. The magnitude of the constant B thus measures the effectiveness 
of the rate of strain tensor in rotating the axis of symmetry, compared to a line 
element with the same orientation. Rotations about the axis do not affect the 
motion of the axis, and have not been calculated a t  all. For more general bodies 
this simplification is impossible, and the reduction to a linear problem cannot be 
effected in this way. 

7. Conclusion 
It is worth recapitulating the somewhat complicated argument of this paper. 

A single rigid particle is moving under no external forces in a unidirectional 
viscous flow field. If the particle is sufficiently small i t  will be carried with the 
local fluid velocity, and its changes of orientation will be determined by the local 
rates of strain and rotation, and may be calculated on the basis of the Stokes 
equations of motion. Using only the linearity and invariance under co-ordinate 
transformations of these equations it was shown in 0 3.1 that the detailed shape 
of the particle affects its rate of rotation only through a third-rank tensor BEBY, 
symmetric between the second and third suffices. In  9 3.4, particles were found 
for which the coefficients B,,, assume arbitrarily assigned values, though for a 
particular choice of axes some are much smaller than others. For a body of 
revolution, however, symmetry properties enable us to deduce that only one 
arbitrary constant B is involved in the specification of B,,, (0 3.2), and the 
orientation orbit may be solved completely. If IBI < 1, the ends of the axis of 
symmetry rotate periodically on one of the singly infinite family of spherical 
ellipses calculated by Jeffery (1923) for an ellipsoid of revolution. If IBJ > 1, the 
orbit is of quite different character, and the axis moves into one of two oppositely 
directed orientations, and there remains. In  0 5.3 an example is given of a body 
of revolution for which IBI > 1. It is, however, extremely long and thin, and 
could probably not be constructed of known materials. The author suspects this 
may be true of all such bodies. In  Q 4 another example is given of a body which 
tends to remain in particular orientations rather than repeatedly overturning. 
This is not a body of revolution and the couple which halts overturning arises in 
a different way. 

I n  general a small particle will move laterally across the streamlines of a simple 
shear even if the Reynolds number is so small that inertia forces are negligible. 
The speed of migration will depend on the shape and orientation of the particle, 



Rigid particles in a shear $ow 303 

but will be proportional to its size. However, it  was shown in 5 2 that for a rigid 
body of revolution if the orientation orbit is periodic lateral movement in one 
half of the cycle is balanced by an equal and opposite movement in the other. The 
same of true in any unidirectional flow bounded by rigid walls even if the particle 
is not small, provided only the character of the orientation orbit is such that the 
axis of symmetry lies in the plane perpendicular to the direction of flow a t  least 
twice. The orbit of any body of revolution is then strictly periodic and no 
systematic lateral migration takes place. If, however, IBJ > 1 and the particle is 
fairly small, everywhere except possibly very near the walls or in a region of 
vanishing velocity gradient, the orientation orbit will not be characterized by 
repeated reversals but one of two orientations will be selected, and provided the 
particle is not symmetrical between its two ends systematic lateral migration will 
take place. 

All these results assume single rigid particles moving under no external forces 
in a unidirectional flow when inertial effects are negligible. That rods and disks 
follow Jeffery’s orientation orbits in a simple shear away from a wall has been 
verified by Trevelyan & Mason (1951), and that they do not move towards or 
away from a rigid wall by Goldsmith & Mason (1961b). Flexible disks, on the 
other hand, move towards the centre of a Poiseuille flow. 

The same theoretical results hold if the flow is not strictly unidirectional, but is 
nevertheless invariant under translations along every streamline (as in a Couette 
viscometer). Also the conclusion that the orbit of a body of revolution of finite 
size is strictly periodic (except for translation down the streamlines) provided 
only successive reversals occur, is unaffected by a constant external force on the 
body parallel to the streamlines (as in a vertically mounted tube when there is 
imperfect density matching between the body and fluid). However, the character 
of the orientation orbit may be completely altered by such a force, and reversals 
inhibited. This would occur if one end of a long rod were much denser than the 
other. For a homogeneous sphere any axis is an axis of symmetry, and it is not 
necessary to postulate repeated reversals to rule out migration. The horizontal 
migration of a sphere sedimenting in a parallel-sided vertical tube which was 
observed by Christopherson & Dowson (1959) cannot be explained within the 
context of the Stokes equations. Systematic lateral migration may also be ruled 
out theoretically for an isolated doublet of two separate spheres in a unidirectional 
flow, for such a system has an axis of symmetry. If one sphere drifting down the 
streamlines is to overtake another one the line joining their centres must not be 
perpendicular to the streamlines more than once, else it must also be so at  regular 
intervals indefinitely, and the spheres have rotated about one another at all 
times in the past and will continue to do so in the future. 

The orbit of an extremely small particle in a general unidirectional flow must 
be described to a first approximation by the Stokes equations even though the 
overall Reynolds number may not be small. The question then arises whether 
neglected inertial forces might not systematically modify the orbits, in particular 
giving rise to a lateral drift. Such a drift would almost certainly be proportional 
to a higher power of the particle size than the first (the measurements of Segr6 & 
Silberberg 1961 suggest the third or fourth power) and would be masked by any 
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drift calculated on the basis of the Stokes equations, which on dimensional 
grounds must vary linearly with particle size. However, it has been shown that 
for most bodies of revolution (including spheres and ellipsoids) the first-order 
drift vanishes, so the problem of computing that due to inertia is important. 

In  Q 6 of this paper the orientation orbit of a rigid infinitesimal body of revolu- 
tion is calculated when it is in a low Reynolds number flow which is not unidirec- 
tional, but geometrically similar at  all points along a streamline with a varying 
scale. This would be true for low Reynolds number laminar flow in a conical pipe. 
The rate of strain and rotation tensors describing the local velocity gradients 
round a particle are unchanged in structure as it moves down a streamline, though 
their overall magnitude may alter. With suitable redefinition of the parameter 
describing time, the equations of motion are those of a particle in a constant 
infinite uniform shear which is three-dimensional in character. In  general any 
body of revolution in such a flow will either move into one of two opposite 
orientations, or rotate until its axis lies in a particular plane in which it reverses 
itself periodically. These orbits are qualitatively distinct from the spherical 
ellipses calculated by Jeffery for particles with IBJ -= 1 in a simple shear. He 
found an infinite family of possible orbits, of which all except two are three- 
dimensional, and which was followed depended on the initial conditions. Here 
there is only one asymptotic orbit for almost all initial orientations, and it is 
either plane, or consists of two discrete oppositely directed orientations. Under 
these circumstances systematic migration of bodies of revolution with IBI < 1 
which are not symmetrical between the two ends will frequently appear. Whereas, 
when the flow is unidirectional the local shear is a simple one, the orbits are 
periodic and the first-order migration vanishes. 

The author is grateful to Dr P. G. Saffman and Lord Rothschild who interested 
him in this problem, and also to the Department of Scientific and Industrial 
Research for a grant. 
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